skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hansen, Karsten T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Motivated by their increasing prevalence, we study outcomes when competing sellers use machine learning algorithms to run real-time dynamic price experiments. These algorithms are often misspecified, ignoring the effect of factors outside their control, for example, competitors’ prices. We show that the long-run prices depend on the informational value (or signal-to-noise ratio) of price experiments: if low, the long-run prices are consistent with the static Nash equilibrium of the corresponding full information setting. However, if high, the long-run prices are supra-competitive—the full information joint monopoly outcome is possible. We show that this occurs via a novel channel: competitors’ algorithms’ prices end up running correlated experiments. Therefore, sellers’ misspecified models overestimate the own price sensitivity, resulting in higher prices. We discuss the implications on competition policy. 
    more » « less